The Mean and the Time Variability of the Shallow Meridional Overturning Circulation in the Tropical South Pacific Ocean
نویسندگان
چکیده
The meridional transport in the Pacific Ocean subtropical cell is studied for the period from 2004 to 2011 using gridded Argo temperature and salinity profiles and atmospheric reanalysis surface winds. The poleward Ekman and equatorward geostrophic branches of the subtropical cell exhibit an El Ni~ no–Southern Oscillation signature with strong meridional transport occurring during La Ni~ na and weak meridional transport during El Ni~ no. At 7.58S, mean basinwide geostrophic transport above 1000 dbar is 48.56 2.5 Sv (Sv[ 10 m s) of which 30.3–38.4 Sv return to the subtropics in the surface Ekman layer, whereas 10.2–18.3 Sv flow northward, feeding the Indonesian Throughflow. Geostrophic transport within the subtropical cell is stronger in the ocean interior andweaker in thewestern boundary during LaNi~ na,with changes in the interior dominating basinwide transport. Using atmospheric reanalyses, only half of the mean heat gain by the Pacific north of 7.58S is compensated by oceanic heat transport out of the region. TheNationalOceanography Centre at Southampton air–sea flux climatology is more consistent for closing the oceanic heat budget. In summary, the use of Argo data for studying the Pacific subtropical cell provides an improved estimate of basinwide mean geostrophic transport, includes both interior and western boundary contributions, quantifies El Ni~ no/La Ni~ na transport variability, and illustrates how the meridional overturning cell dominates ocean heat transport at 7.58S.
منابع مشابه
How Can Tropical Pacific Ocean Heat Transport Vary?
Pacific Ocean oceanic heat transport is studied in an ocean model coupled to an atmospheric mixed-layer model. The shallow meridional overturning circulation cells in the Tropics and subtropics transport heat away from the equator. The heat transport by the horizontal gyre circulation in the Tropics is smaller and directed toward the equator. The response of the Pacific oceanic heat transport t...
متن کاملCan global warming affect tropical ocean heat transport?
Tropical meridional ocean heat transport is studied in six coupled ocean-atmosphere models in which atmospheric CO 2 concentration has been increased. In the Indo-Pacific, the strength of Subtropical Cells (STCs) changes in response to changes in the trade winds. However, the change is not consistent among models. In contrast, in all models the tropical Indo-Pacific heat transport remains nearl...
متن کاملTropical Pacific–Driven Decadel Energy Transport Variability
The atmospheric energy transport variability associated with decadal sea surface temperature variability in the tropical Pacific is studied using an atmospheric primitive equation model coupled to a slab mixed layer. The decadal variability is prescribed as an anomalous surface heat flux that represents the reduced ocean heat transport in the tropical Pacific when it is anomalously warm. The at...
متن کاملGlobal Teleconnections in Response to a Shutdown of the Atlantic Meridional Overturning Circulation*
The global response to a shutdown of the Atlantic meridional overturning circulation (AMOC) is investigated by conducting a water-hosing experiment with a coupled ocean–atmosphere general circulation model. In the model, the addition of freshwater in the subpolar North Atlantic shuts off the AMOC. The intense cooling in the extratropical North Atlantic induces a widespread response over the glo...
متن کاملThe monsoon circulation of the Indian Ocean
In this paper, we review observations, theory and model results on the monsoon circulation of the Indian Ocean. We begin with a general overview, discussing wind-stress forcing fields and their anomalies, climatological distributions of stratification, mixed-layer depths, altimetric sea-level distributions, and seasonal circulation patterns (Section 2). The three main monsoon circulation sectio...
متن کامل